Name:
Date:

Cubed Binomial

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

Perfect Squares $\quad(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$
Difference of Squares $\quad a^{2}-b^{2}=(a+b)(a-b)$

Directions: Show your work for credit. Circle your final answer.

1. The following table shows incorrect expansions. For each identify and explain the mistake(s).

	Mistake(s) made	Correct expansion
$(x+2)^{2}$	$=(x+2)(x+2)$	
	$=2 x+2 x+2 x+4$	
	$=6 x+4$	
$(x-3)^{2}$	$=(x-3)(x-3)$	
	$=x^{2}-9$	

Show your work for credit:
2. The algebraic expansion of several expressions is shown below:

	Expanded Expressions
\mathbf{A}	$2 x^{2}+8 x+8$
\mathbf{B}	$x^{2}-x-12$
\mathbf{C}	$9 x^{2}-1$
\mathbf{D}	$3 x^{2}+12 x+9$
\mathbf{E}	$1+14 x+49 x^{2}$

	Factorized Expressions
$\mathbf{1}$	$(3 x-1)(3 x+1)$
$\mathbf{2}$	$(1+7 x)(1+7 x)$
$\mathbf{3}$	$2(x+2)^{2}$
$\mathbf{4}$	$3(x+1)(x+3)$
$\mathbf{5}$	$(x-4)(x+3)$

Fill out the table by matching each expanded expression to its correct factorization:

\mathbf{A}	B	C	D	E

Show your work for credit:
3. The side length of a cube is given by the expression $(2-y)$.

Find the volume of the cube in terms of y and simplify your answer. Hint: for a cube Volume $=$ side \times side \times side

(Total 3 marks)
4. Expand and simplify the following expressions. Circle your final answer.
(a) $-2 x^{2}(4 x-1)$
(b) $x(x-2)-3 x(x+1)$
(c) $-x(4 x-2)^{2}$
(d) $(7 x-1)(7 x+1)$
5. Expand and simplify the following expressions. Circle your final answer.

Hint: to expand use distribution (FOIL) or the formula $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
(a) $3(3 a+3 b)(a+b)(a+b)$
(b) $(2 x+y)^{3}$

(Total 2 points)

6. Explain how to use the figure to show $(a+b)^{2}=a^{2}+2 a b+b^{2}$

7. Expand and simplify the binomial $(a+b)^{4}$

Hint: $(a+b)^{4}=(a+b)(a+b)^{3}$
8. Bonus: What is the value of $5 \times(-1+2) \times(3-4) \times(-5+6) \times \ldots \times(999-1000)$? Hint: the 3 dots means that the pattern above continues the same way until 1000.

